Some notes on derivatives (23 October 2003)

(a) The derivative as a limit The usual definition of the derivative f'(z)
of the function f(z) is

f'(z) = lim (1)
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We get the derivative at a particular point = a by replacing x by a in (1).

Thus L
f’(a) — lim f(CL+ })l_ f(CL)

h—0

(2)

We can also choose to write h as h = x — a, in which case we have from (2)
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The new expression (3) is sometimes useful, and it leads to nice examples.
[al] Suppose in (3) we take f(x) = cos(z), and a = 3w, Then, since f(a) =

cos(3m) = —1, we have in this case

cos(x) +1

"(a) = cos'(3m) = i 0. 4
(@) = cos'(3r) = iy )
The result is zero because cos'(x) = —sin(z), so cos'(37) = —sin(37) = 0.

[a2] Suppose in (3) we take f(x) = In(z), and a = 1, then (since in(1) = 0)

f'(a) ='(1) = lim In(z) —In(1) _
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The result is 1 because In/(z) = 1/x, and hence In(1) = 1. Since the limit is
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1, we know that near x = 1, In(x) ‘looks like’ its tangent line y = = — 1.

(b) Some logarithmic deriviatives The basic result y = e* = ' =
e® leads immediately (via the chain rule) to examples such as y = € =
y = be®, and y = @) = ¢/ = —sin(x)e®). For y = a®, we can write
y = exp(zln(a)) = ¢ = In(a)exp(xin(a)) = In(a)a®. However if, in this
example, a also depends on x, we have to think again. One very effective
method to treat such cases is first to ‘take logs’, as shown in the following
examples:

[b1] Suppose more generally that y = f(z)"@, then In(y) = 7(z)In f(z),
and we have v/ /y = ' In(f) + rf'/f. Consequently we have

b= = Y= (r'1n<f>+7”7f').

When ‘towers’ of exponentiation are involved, one can take logs repeatedly,
until a simple form is reached. It is first necessary to recall the elementary
result y = In(In(z)) for which ¢’ = 1/(xIn(x)), by the chain rule.

[b2]

2

Yy = 2 o In(y) =In(2)3* = In(In(y)) = In(In(2)) + In(3)z>.

Upon differentiation, the constant term vanishes and we first obtain

_ 93 _
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and finally
22
y' = In(2)In(3)223%°2%" .

One can get the same answer by using the chain rule repeatedly; taking logs
twice may be a little ‘safer’. The temptation to involve the number 8 must
be resisted.



(c¢) An nth derivative formula Suppose f(z) = /x, and we seek the nth
derivative f((x). We first make a few steps, and then try to generalize.
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This general formula works nicely for n > 1, and this is satisfactory since we
don’t need a formula for n = 1. The idea to replace the product in (c1) by a
ratio of factorial functions and powers of 2 is caprice made here merely ‘for
fun’. We now work on this product: the difficulty is to count correctly so
that the products begin and end as they should.
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Replacing the sum in (c1) we find finally
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f(n)(x) = (—1)n_1 m )
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