
Some notes on derivatives (23 October 2003)

(a) The derivative as a limit The usual definition of the derivative f ′(x)
of the function f(x) is

f ′(x) = lim
h→0

f(x + h) − f(x)

h
. (1)

We get the derivative at a particular point x = a by replacing x by a in (1).
Thus

f ′(a) = lim
h→0

f(a + h) − f(a)

h
. (2)

We can also choose to write h as h = x − a, in which case we have from (2)

f ′(a) = lim
x→a

f(a + (x − a)) − f(a)

x − a
= lim

x→a

f(x) − f(a)

x − a
. (3)

The new expression (3) is sometimes useful, and it leads to nice examples.

[a1] Suppose in (3) we take f(x) = cos(x), and a = 3π, Then, since f(a) =
cos(3π) = −1, we have in this case

f ′(a) = cos′(3π) = lim
x→3π

cos(x) + 1

x − 3π
= 0. (4)

The result is zero because cos′(x) = −sin(x), so cos′(3π) = −sin(3π) = 0.

[a2] Suppose in (3) we take f(x) = ln(x), and a = 1, then (since ln(1) = 0)

f ′(a) = ln′(1) = lim
x→1

ln(x) − ln(1)

x − 1
= lim

x→1

ln(x)

x − 1
= 1. (5)

The result is 1 because ln′(x) = 1/x, and hence ln(1) = 1. Since the limit is
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1, we know that near x = 1, ln(x) ‘looks like’ its tangent line y = x − 1.

(b) Some logarithmic deriviatives The basic result y = ex ⇒ y′ =
ex leads immediately (via the chain rule) to examples such as y = ebx ⇒
y′ = bex, and y = ecos(x) ⇒ y′ = − sin(x)ecos(x). For y = ax, we can write
y = exp(x ln(a)) ⇒ y′ = ln(a) exp(x ln(a)) = ln(a)ax. However if, in this
example, a also depends on x, we have to think again. One very effective
method to treat such cases is first to ‘take logs’, as shown in the following
examples:
[b1] Suppose more generally that y = f(x)r(x), then ln(y) = r(x) ln f(x),
and we have y′/y = r′ ln(f) + rf ′/f . Consequently we have

y = (f)r ⇒ y′ = (f)r

(
r′ ln(f) +

rf ′

f

)
.

When ‘towers’ of exponentiation are involved, one can take logs repeatedly,
until a simple form is reached. It is first necessary to recall the elementary
result y = ln(ln(x)) for which y′ = 1/(x ln(x)), by the chain rule.
[b2]

y = 23x2

⇒ ln(y) = ln(2)3x2 ⇒ ln(ln(y)) = ln(ln(2)) + ln(3)x2.

Upon differentiation, the constant term vanishes and we first obtain

y = 23x2

⇒ y′

y ln(y)
= 2x ln(3)

and finally

y′ = ln(2) ln(3)2x3x2

23x2

.

One can get the same answer by using the chain rule repeatedly; taking logs
twice may be a little ‘safer’. The temptation to involve the number 8 must
be resisted.
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(c) An nth derivative formula Suppose f(x) =
√

x, and we seek the nth
derivative f (n)(x). We first make a few steps, and then try to generalize.

f ′(x) =
(

1

2

)
x− 1

2

f ′′(x) =
(

1

2

)(
−1

2

)
x− 3

2

f ′′′(x) =
(

1

2

)(
−1

2

)(
−3

2

)
x− 5

2

. . .

f (n)(x) =
(

1

2

)(
−1

2

)(
−3

2

)
. . .
(
−2n − 3

2

)
x− 2n−1

2

f (n)(x) = (−1)n−1 1 × 3 × 5 × . . . × (2n − 3)

2n
x−n+ 1

2 , n ≥ 2. (c1)

This general formula works nicely for n > 1, and this is satisfactory since we
don’t need a formula for n = 1. The idea to replace the product in (c1) by a
ratio of factorial functions and powers of 2 is caprice made here merely ‘for
fun’. We now work on this product: the difficulty is to count correctly so
that the products begin and end as they should.

1 × 3 × . . . × (2n − 3) =
1 × 2 × 3 × 4 × . . . × (2n − 3)

2 × 4 × . . . × (2n − 4)

=
(2n − 3)!

2n−2 × 1 × 2 × . . . × (n − 2)

=
(2n − 3)!

2n−2(n − 2)!

Replacing the sum in (c1) we find finally

f (n)(x) = (−1)n−1 (2n − 3)!

22n−2(n − 2)!
x−n+ 1

2 , n ≥ 2.

Richard Hall
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