Math 380 Midterm Test 27 February 1996

Professor: Richard Hall

Instructions: Please answer both questions, which carry equal marks.

Calculators are permitted.

- 1. Consider the Euclidean space E^3 with its tangent spaces $T_p(E^3)$. Suppose $f=x^2z+xy^2$ is a real-valued function, $\phi=e^{xy}dx-z^2dy+(1+x)dz$ is a 1-form, $W=U_1+xU_2-yzU_3$ is a vector field, $\mathbf{p}=(1,-1,2)\in E^3$, and $\mathbf{v}=(0,1,3)$ is a tangent vector at \mathbf{p} .
 - (a) Find the value of $\phi(\mathbf{v})$, and also an expression for the real-valued function $\phi(W): E^3 \to R$.
 - (b) Find the 1-form $\psi = df$ and the value $df(\mathbf{v})$.
 - (c) Find the wedge product $\phi \wedge d(f^2)$ and also d^2f .
 - (d) Find expressions for $d\phi$ and $d^2\phi$.
 - (e) Suppose that α is a curve in E^3 with $\alpha(0) = \mathbf{p}$ and $\alpha'(0) = \mathbf{v}$. Find the value of $\frac{d}{dt}W(\alpha(t))|_{t=0}$. [HINT $\nabla_{\mathbf{v}}W$]
- 2. Consider the curve $\alpha: I \to E^3$ given by $\alpha(t) = (t, t^2, e^t)$, where $0 \in I$.
 - (a) Find the Serret-Frenet frame field $\{T, N, B\}$ at t = 0.
 - (b) Find the curvature κ and the torsion τ at t=0.
 - (c) Determine whether or not α is a plane curve.
 - (d) Find the centre ${\bf c}$ and the radius a of a circle which has the same curvature κ and tangent T as α and which lies in the same osculating plane as that of α at t=0.
 - (e) Explain whether or not α is a cylindrical helix and give a *rough* sketch of the curve.