Math 251 Sec A Midterm Test 15 October 2003

Professor:	Richard Hall
Instructions:	Please answer both questions, which carry equal marks.
	Explain your work clearly. Calculators are permitted.

1.

(a) Find the coordinates of the matrix $\begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}$ in the basis \mathcal{B} , where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

- (b) If U and W are subspaces of V whose dimension is 9, and $\dim(U) = 3$, and $\dim(W) = 5$, what could be the possible values of $\dim(U \cap W)$?
- (c) If $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 22 & -20 \\ 4 & 5 & -1 \end{pmatrix}$ and B is an invertible 3×3 matrix, what is the rank of AB?

2.

- (a) If \mathcal{A} is a set of vectors in a vector space V, show that $W = \text{Span}(\mathcal{A})$ is a subspace of V.
- (b) Consider the set of vectors in $V = \mathbb{R}^4$ given by

$$\mathcal{A} = \{ (1, 0, 2, 2), (3, 0, 6, 0), (-1, 1, 0, 3), (1, 2, 6, 6) \}.$$

Find the dimension of $W = \text{Span}(\mathcal{A})$, and a subset \mathcal{B} of \mathcal{A} which is a basis for W.